Distributed System – Theory

1. What is a distributed system?
Definitions

- “A distributed system is a collection of independent computers that appear to the users of the system as a single computer” (Tanenbaum, 1994)

- Aspects:
 - hardware: the machines are autonomous.
 - software: the users think of the system as a single computer
Example 1

- the system of a large bank with hundreds of branch offices all over the world
 - Each office has a master computer to store local accounts and handle local transactions
 - each computer has the ability to talk to all other branch computers and with a central computer at headquarters
 - transactions can be done without regard to where a customer or account is
 - the users do not notice any difference between this system and the old centralized mainframe that it replaced
Example 2

- a factory full of robots
 - each robot: a powerful computer for handling vision, planning, communication, & other tasks.
 - all robots act like peripheral devices attached to the same central computer
 - a robot on the assembly line notices that a part it is supposed to install is defective, it asks another robot in the parts department to bring it a replacement
Example 3

- a network of workstations in a university or company department
 - a pool of processors in the machine room that are not assigned to specific users but are allocated dynamically as needed
 - a single file system with all files accessible from all machines in the same way and using the same path name
 - when a user typed a command, the system could look for the best place to execute that command, possibly on
 - the user's own workstation,
 - an idle workstation belonging to someone else,
 - one of the unassigned processors in the machine room
 - the system as a whole looked and acted like a classical single-processor timesharing system
A distributed system is an information-processing system that contains a number of independent computers that cooperate with one another over a communications network in order to achieve a specific objective.

Aspects:

- Computers are linked to one another over a communications network that enables an exchange of messages between computers.
- Objective of this message exchange is to achieve a cooperation between computers for the purpose of attaining a common goal.
Views

- Physical view: computers as nodes of the communications network along with details about the communications network itself

- Logical view:
 - applications aspects
 - interpreted as a set of cooperating processes
 - logical distribution is independent of the physical one: eg: processes do not necessarily have to be linked over a network but instead can all be found on one computer.
Distributed vs. Parallel

The Computing Continuum

Loosely Coupled
- Special Purpose “SETI / Google”
- “Grids”
- Clusters
- Highly Parallel

Tightly Coupled
Advantages of Distributed Systems over Centralized Systems (1)

Decentralization is a more economic:
- networked computing systems offer a better price/performance ratio than centralized systems
- redundancy increases availability when parts of a system fail
- applications that can easily be run simultaneously also offer benefits in terms of faster performance vis-à-vis centralized solutions
- distributed systems can be extended through the addition of components, thereby providing better scalability compared to centralized systems.
Advantages of Distributed Systems over Centralized Systems (2)

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Economics</td>
<td>Better price/performance rate for networked computers than central.</td>
</tr>
<tr>
<td>Speed</td>
<td>A distributed system may have more total computing power than one</td>
</tr>
<tr>
<td>Inherent distribution</td>
<td>Some applications involve spatially separated machines</td>
</tr>
<tr>
<td>Reliability</td>
<td>If one machine crashes, the system as a whole can still survive</td>
</tr>
<tr>
<td>Incremental growth</td>
<td>Computing power can be added in small increments</td>
</tr>
</tbody>
</table>
Advantages of Distributed Systems over Independent PCs

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data sharing</td>
<td>Allow many users access to a common data base</td>
</tr>
<tr>
<td>Device sharing</td>
<td>Allow many users to share expensive devices</td>
</tr>
<tr>
<td>Communication</td>
<td>Make human-to-human communication easier</td>
</tr>
<tr>
<td>Flexibility</td>
<td>Spread the workload over available machines in the most cost effective way</td>
</tr>
</tbody>
</table>
Advantages of Distributed Computing Environment over Standalone Application

1. **Higher performance:** Applications can execute in parallel and distribute the load across multiple servers.
2. **Collaboration:** Multiple applications can be connected through standard distributed computing mechanisms.
3. **Higher reliability & availability:** Applications or servers can be clustered in multiple machines.
4. **Scalability:** By deploying reusable distributed components on powerful servers.
5. **Extensibility:** Dynamic (re)configuration of applications distributed across network.
6. **Higher productivity & lower development cycle time:** Breaking up large problems into smaller ones, these individual components can be developed by smaller development teams in isolation.
7. **Reuse.** Services that can potentially be used by multiple client applications.
8. **Reduced cost.** Due to the reuse of once developed components that are accessible over the network.
Disadvantages of Distributed Systems

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Software</td>
<td>Complexity of programming distributed systems</td>
</tr>
<tr>
<td>Networking</td>
<td>The network can saturate or cause other problems</td>
</tr>
<tr>
<td>Security</td>
<td>Easy access also applies to secret data</td>
</tr>
</tbody>
</table>